ARCTIS - A MATLAB® Toolbox for Archaeological Imaging Spectroscopy

نویسندگان

  • Clement Atzberger
  • Michael Wess
  • Michael Doneus
  • Geert J. Verhoeven
چکیده

Imaging spectroscopy acquires imagery in hundreds or more narrow contiguous spectral bands. This offers unprecedented information for archaeological research. To extract the maximum of useful archaeological information from it, however, a number of problems have to be solved. Major problems relate to data redundancy and the visualization of the large amount of data. This makes data mining approaches necessary, as well as efficient data visualization tools. Additional problems relate to data quality. Indeed, the upwelling electromagnetic radiation is recorded in small spectral bands that are only about ten nanometers wide. The signal received by the sensor is, thus quite low compared to sensor noise and possible atmospheric perturbations. The often small, instantaneous field of view (IFOV)—essential for archaeologically relevant imaging spectrometer datasets—further limits the useful signal stemming from the ground. The combination of both effects makes radiometric smoothing techniques mandatory. The present study details the functionality of a MATLAB-based toolbox, called ARCTIS (ARChaeological Toolbox for Imaging Spectroscopy), for filtering, enhancing, analyzing, and visualizing imaging spectrometer datasets. The toolbox addresses the above-mentioned problems. Its OPEN ACCESS Remote Sens. 2014, 6 8618 Graphical User Interface (GUI) is designed to allow non-experts in remote sensing to extract a wealth of information from imaging spectroscopy for archaeological research. ARCTIS will be released under creative commons license, free of charge, via website (http://luftbildarchiv.univie.ac.at).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OXSA: An open-source magnetic resonance spectroscopy analysis toolbox in MATLAB

In vivo magnetic resonance spectroscopy provides insight into metabolism in the human body. New acquisition protocols are often proposed to improve the quality or efficiency of data collection. Processing pipelines must also be developed to use these data optimally. Current fitting software is either targeted at general spectroscopy fitting, or for specific protocols. We therefore introduce the...

متن کامل

A Matlab Toolbox for Magnetic Resonance Electrical Impedance Tomography (MREIT): MREIT Toolbox

Magnetic Resonance Electrical Impedance Tomography (MREIT) is a relatively new imaging technique that allows tomographic imaging of electrical conductivity of biologically conductive objects. In this paper, we present software that has been implemented to accompany MREIT. The software offers various computational tools from preprocessing of MREIT data to reconstruction of crosssectional conduct...

متن کامل

FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data

Functional near-infrared spectroscopy (fNIRS), a promising noninvasive imaging technique, has recently become an increasingly popular tool in resting-state brain functional connectivity (FC) studies. However, the corresponding software packages for FC analysis are still lacking. To facilitate fNIRS-based human functional connectome studies, we developed a MATLAB software package called "functio...

متن کامل

Detection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine

Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...

متن کامل

PULSAR: A MATLAB Toolbox for Parallel Magnetic Resonance Imaging Using Array Coils and Multiple Channel Receivers

Partial parallel imaging (PPI) techniques using array coils and multichannel receivers have become an effective approach to achieving fast magnetic resonance imaging (MRI). This article presents a Matlab toolbox called PULSAR (Parallel imaging Utilizing Localized Surface-coil Acquisition and Reconstruction) that can simulate the data acquisition and image reconstruction, and analyze performance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014